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  Precision measurements vs. direct detection  
-

Direct vs. indirect detection 

๏ provide complementary information

๏ success of SM

๏ consistency check of any new physics scenario
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  Z-pole precision measurements  
-
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Measurement Fit |Omeas−Ofit|/σmeas
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Δαhad(mZ)Δα(5) 0.02750 ± 0.00033 0.02759
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874
ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959
σhad [nb]σ0 41.540 ± 0.037 41.478
RlRl 20.767 ± 0.025 20.742
AfbA0,l 0.01714 ± 0.00095 0.01645
Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481
RbRb 0.21629 ± 0.00066 0.21579
RcRc 0.1721 ± 0.0030 0.1723
AfbA0,b 0.0992 ± 0.0016 0.1038
AfbA0,c 0.0707 ± 0.0035 0.0742
AbAb 0.923 ± 0.020 0.935
AcAc 0.670 ± 0.027 0.668
Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481
sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314
mW [GeV]mW [GeV] 80.385 ± 0.015 80.377
ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092
mt [GeV]mt [GeV] 173.20 ± 0.90 173.26

March 2012
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๏ Confirmation of SM @ quantum level
๏ Sensitive to new physics interact with W and Z
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Low energy precision measurements 

๏ address questions difficult to study at high energy (LHC)
   weak interactions (parity violation)

๏ probe new physics off the Z-resonance
- sensitive to new physics not mix with Z (and W)

-

๏ high precision low energy experiment available      
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muon g-2

muon g-2: M=mµ , Mnew =mW  ⟹	
  δnew ∼ 2x10-9, δexp < 10-9

-

size of loop effects from new physics: (α/π)(M/Mnew)2 

SM issues w.r.t. g-2: Ruth Van de Water

DRAFT

26 CONTENTS

where Q = ±1 and e > 0. Dirac theory predicts g ⌘ 2, but radiative corrections dominated by the
lowest-order (mass-independent) Schwinger contribution ae,µ,⌧ = ↵/(2⇡) [44] make it necessary to write the
magnetic moment as

µ = (1 + a)
Qeh̄

2m
with a =

g � 2

2
. (1.11)

The muon played an important role in our discovery of the generation structure of the Standard Model (SM)
when experiments at the Nevis cyclotron showed that gµ was consistent with 2 [45]. Subsequent experiments
at Nevis and CERN showed that aµ ' ↵/(2⇡) [46, 47], implying that in a magnetic field, the muon behaves
like a heavy electron. The SM value of the muon anomaly is now known to better than half a part per
million (ppm), and has been measured to a similar precision [48].

The quantity ⌘ in Eq. 1.10 is analogous to the g-value for the magnetic dipole moment. An EDM violates
both P and T symmetries [49, 50, 51], and since C is conserved, CP is violated as well. Thus searches for
EDMs provide an important tool in our quest to find non-Standard Model CP violation.

The measured value of the muon anomalous magnetic moment is in apparent disagreement with the expected
value based on the SM. The BNL E821 experiment finds [52]

aµ(Expt) = 116 592 089(54)(33) ⇥ 10�11, (1.12)

where aµ = (g�2)/2 is the muon anomaly, and the uncertainties are statistical and systematic, respectively.
This can be compared with the SM prediction [53, 54]

aµ(SM) = 116 591 802(42)(26)(02) ⇥ 10�11, (1.13)

where the uncertainties are from the O(↵2) hadronic vacuum polarization (HVP) contribution, O(↵3)
hadronic contributions (including hadronic light-by-light (HLbL) scattering), and all others (pure QED,
including a 5-loop estimate [55], and electroweak, including 2-loops [56]). The hadronic contributions
dominate the uncertainty in aµ(SM). The discrepancy between the measurement and the SM stands at

�aµ = 287(80) ⇥ 10�11 (1.14)

(3.6 standard deviations (�)), when based on the e+e� ! hadrons analysis for the HVP contribution [53].
When the HVP analysis is complemented by ⌧ ! hadrons, the discrepancy is reduced to 2.4� [53]. However,
a recent re-analysis, employing e↵ective field theory techniques, of the ⌧ data [57] shows virtual agreement
with the e+e�-based analysis, which would solidify the current discrepancy at the 3.6� level. �aµ is large,
roughly two times the EW contribution [56], indicating potentially large new physics contributions.

The anomalous magnetic moment of the muon is sensitive to contributions from a wide range of physics
beyond the standard model. It will continue to place stringent restrictions on all of the models, both present
and yet to be written down. If physics beyond the standard model is discovered at the LHC or other
experiments, aµ will constitute an indispensable tool to discriminate between very di↵erent types of new
physics, especially since it is highly sensitive to parameters which are di�cult to measure at the LHC. If no
new phenomena are found elsewhere, then it represents one of the few ways to probe physics beyond the
standard model. In either case, it will play an essential and complementary role in the quest to understand
physics beyond the standard model at the TeV scale.

The muon magnetic moment has a special role because it is sensitive to a large class of models related and
unrelated to electroweak symmetry breaking and because it combines several properties in a unique way: it
is a flavor- and CP-conserving, chirality-flipping and loop-induced quantity. In contrast, many high-energy
collider observables at the LHC and a future linear collider are chirality-conserving, and many other low-
energy precision observables are CP- or flavor-violating. These unique properties might be the reason why

Community Planning Study: Snowmass 2013
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muon g-2: new physics
-

๏ sensitive to new physics related/unrelated to EWSB

๏ flavor-, CP-conserving, chirality flipping, loop induced

- high energy colliders: chirality conserving

- other LE precision observables: CP-, flavor- violating

๏ sensitive to lepton couplings
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DRAFT

1.3 Flavor-Conserving Processes 27

the muon (g � 2) is the only among the mentioned observables which shows a significant deviation between
the experimental value and the SM prediction. Furthermore, while g� 2 is sensitive to leptonic couplings, b-
or K-physics more naturally probe the hadronic couplings of new physics. If charged lepton-flavor violation
exists, observables such as µ ! e conversion can only determine a combination of the strength of lepton-
flavor violation and the mass scale of new physics. In that case, g � 2 can help to disentangle the nature of
the new physics.

((( I would like to reduce this entire thing below to one table. BCKC)))))

Unravelling the existence and the properties of such new physics requires experimental information comple-
mentary to the LHC. The muon (g � 2), together with searches for charged lepton flavor violation, electric
dipole moments, and rare decays, belongs to a class of complementary low-energy experiments.

In fact, The role of g�2 as a discriminator between very di↵erent standard model extensions is well illustrated
by a relation stressed by Czarnecki and Marciano [72]. It holds in a wide range of models as a result of
the chirality-flipping nature of both g � 2 and the muon mass: If a new physics model with a mass scale ⇤
contributes to the muon mass �mµ(N.P.), it also contributes to aµ, and the two contributions are related as

aµ(N.P.) = O(1) ⇥
⇣mµ

⇤

⌘2

⇥
✓
�mµ(N.P.)

mµ

◆
. (1.15)

The ratio C(N.P.) ⌘ �mµ(N.P.)/mµ cannot be larger than unity unless there is fine-tuning in the muon mass.
Hence a first consequence of this relation is that new physics can explain the currently observed deviation
(??) only if ⇤ is at the few-TeV scale or smaller.

In many models, the ratio C arises from one- or even two-loop diagrams, and is then suppressed by factors
like ↵/4⇡ or (↵/4⇡)2. Hence, even for a given ⇤, the contributions to aµ are highly model dependent.

It is instructive to classify new physics models as follows:

• Models with C(N.P.) ' 1: Such models are of interest since the muon mass is essentially generated
by radiative e↵ects at some scale ⇤. A variety of such models have been discussed in [72], including
extended technicolor or generic models with naturally vanishing bare muon mass. For examples of
radiative muon mass generation within supersymmetry, see e.g. [90, 91]. In these models the new
physics contribution to aµ can be very large,

aµ(⇤) ' m2
µ

⇤2
' 1100 ⇥ 10�11

✓
1 TeV

⇤

◆2

. (1.16)

and the di↵erence Eq. (??) can be used to place a lower limit on the new physics mass scale, which is
in the few TeV range [92, 91].

• Models with C(N.P.) = O(↵/4⇡): Such a loop suppression happens in many models with new weakly
interacting particles like Z 0 or W 0, little Higgs or certain extra dimension models. As examples, the
contributions to aµ in a model with � = 1 (or 2) universal extra dimensions (UED) [93] and the Littlest
Higgs model with T-parity (LHT) [94] are given by with |SKK|<⇠1 [93]. A di↵erence as large as Eq. (??)
is very hard to accommodate unless the mass scale is very small, of the order of MZ , which however is
often excluded e.g. by LEP measurements. So typically these models predict very small contributions
to aµ and will be disfavored if the current deviation will be confirmed by the new aµ measurement.

Exceptions are provided by models where new particles interact with muons but are otherwise hidden
from searches. An example is the model with a new gauge boson associated to a gauged lepton number
Lµ � L⌧ [95], where a gauge boson mass of O(100 GeV) and large aµ are viable.

Community Planning Study: Snowmass 2013
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Exceptions are provided by models where new particles interact with muons but are otherwise hidden
from searches. An example is the model with a new gauge boson associated to a gauged lepton number
Lµ � L⌧ [95], where a gauge boson mass of O(100 GeV) and large aµ are viable.
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the muon (g � 2) is the only among the mentioned observables which shows a significant deviation between
the experimental value and the SM prediction. Furthermore, while g� 2 is sensitive to leptonic couplings, b-
or K-physics more naturally probe the hadronic couplings of new physics. If charged lepton-flavor violation
exists, observables such as µ ! e conversion can only determine a combination of the strength of lepton-
flavor violation and the mass scale of new physics. In that case, g � 2 can help to disentangle the nature of
the new physics.
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Unravelling the existence and the properties of such new physics requires experimental information comple-
mentary to the LHC. The muon (g � 2), together with searches for charged lepton flavor violation, electric
dipole moments, and rare decays, belongs to a class of complementary low-energy experiments.

In fact, The role of g�2 as a discriminator between very di↵erent standard model extensions is well illustrated
by a relation stressed by Czarnecki and Marciano [72]. It holds in a wide range of models as a result of
the chirality-flipping nature of both g � 2 and the muon mass: If a new physics model with a mass scale ⇤
contributes to the muon mass �mµ(N.P.), it also contributes to aµ, and the two contributions are related as
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The ratio C(N.P.) ⌘ �mµ(N.P.)/mµ cannot be larger than unity unless there is fine-tuning in the muon mass.
Hence a first consequence of this relation is that new physics can explain the currently observed deviation
(??) only if ⇤ is at the few-TeV scale or smaller.

In many models, the ratio C arises from one- or even two-loop diagrams, and is then suppressed by factors
like ↵/4⇡ or (↵/4⇡)2. Hence, even for a given ⇤, the contributions to aµ are highly model dependent.

It is instructive to classify new physics models as follows:

• Models with C(N.P.) ' 1: Such models are of interest since the muon mass is essentially generated
by radiative e↵ects at some scale ⇤. A variety of such models have been discussed in [72], including
extended technicolor or generic models with naturally vanishing bare muon mass. For examples of
radiative muon mass generation within supersymmetry, see e.g. [90, 91]. In these models the new
physics contribution to aµ can be very large,
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and the di↵erence Eq. (??) can be used to place a lower limit on the new physics mass scale, which is
in the few TeV range [92, 91].

• Models with C(N.P.) = O(↵/4⇡): Such a loop suppression happens in many models with new weakly
interacting particles like Z 0 or W 0, little Higgs or certain extra dimension models. As examples, the
contributions to aµ in a model with � = 1 (or 2) universal extra dimensions (UED) [93] and the Littlest
Higgs model with T-parity (LHT) [94] are given by with |SKK|<⇠1 [93]. A di↵erence as large as Eq. (??)
is very hard to accommodate unless the mass scale is very small, of the order of MZ , which however is
often excluded e.g. by LEP measurements. So typically these models predict very small contributions
to aµ and will be disfavored if the current deviation will be confirmed by the new aµ measurement.

Exceptions are provided by models where new particles interact with muons but are otherwise hidden
from searches. An example is the model with a new gauge boson associated to a gauged lepton number
Lµ � L⌧ [95], where a gauge boson mass of O(100 GeV) and large aµ are viable.
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• Models with intermediate values for C(N.P.) and mass scales around the weak scale: In such models,
contributions to aµ could be as large as Eq. (??) or even larger, or smaller, depending on the details
of the model. This implies that a more precise aµ-measurement will have significant impact on such
models and can even be used to measure model parameters. Supersymmetric (SUSY) models are the
best known examples, so muon g�2 would have substantial sensitivity to SUSY particles. Compared to
generic perturbative models, supersymmetry provides an enhancement to C(SUSY) = O(tan�⇥↵/4⇡)
and to aµ(SUSY) by a factor tan� (the ratio of the vacuum expectation values of the two Higgs fields).
Typical SUSY diagrams for the magnetic dipole moment, the electric dipole moment, and the lepton-
number violating conversion process µ ! e in the field of a nucleus are shown pictorially in Fig. ??.
The shown diagrams contain the SUSY partners of the muon, electron and the SM U(1)Y gauge boson,
µ̃, ẽ, B̃. The full SUSY contributions involve also the SUSY partners to the neutrinos and all SM gauge
and Higgs bosons. In a model with SUSY masses equal to ⇤ the SUSY contribution to aµ is given
by [72]

aµ(SUSY) ' sgn (µ) 130 ⇥ 10�11 tan�

✓
100 GeV

⇤

◆2

(1.17)

which indicates the dependence on tan�, and the SUSY mass scale, as well as the sign of the SUSY
µ-parameter. The formula still approximately applies even if only the smuon and chargino masses are
of the order ⇤ but e.g. squarks and gluinos are much heavier. However the SUSY contributions to aµ
depend strongly on the details of mass splittings between the weakly interacting SUSY particles. Thus
muon g � 2 is sensitive to SUSY models with SUSY masses in the few hundred GeV range, and it will
help to measure SUSY parameters.

There are also non-supersymmetric models with similar enhancements. For instance, lepton flavor
mixing can help. An example is provided in Ref. [96] by a model with two Higgs doublets and
four generations, which can accommodate large �aµ without violating constraints on lepton flavor
violation. In variants of Randall-Sundrum models [97, 98, 99] and large extra dimension models
[100], large contributions to aµ might be possible from exchange of Kaluza-Klein gravitons, but the
theoretical evaluation is di�cult because of cuto↵ dependences. A recent evaluation of the non-graviton
contributions in Randall-Sundrum models, however, obtained a very small result [101].

Further examples include scenarios of unparticle physics [102, 103] (here a more precise aµ-measurement
would constrain the unparticle scale dimension and e↵ective couplings), generic models with a hidden
sector at the weak scale [104] or a model with the discrete flavor symmetry group T 0 and Higgs triplets
[105] (here a more precise aµ-measurement would constrain hidden sector/Higgs triplet masses and
couplings), or the model proposed in Ref. [106], which implements the idea that neutrino masses,
leptogenesis and the deviation in aµ all originate from dark matter particles. In the latter model, new
leptons and scalar particles are predicted, and aµ provides significant constraints on the masses and
Yukawa couplings of the new particles.

The following types of new physics scenarios are quite di↵erent from the ones above:

• Models with extended Higgs sector but without the tan�-enhancement of SUSY models. Among
these models are the usual two-Higgs-doublet models. The one-loop contribution of the extra Higgs
states to aµ is suppressed by two additional powers of the muon Yukawa coupling, corresponding to
aµ(N.P.) / m4

µ/⇤
4 at the one-loop level. Two-loop e↵ects from Barr-Zee diagrams can be larger [107],

but typically the contributions to aµ are negligible in these models.

• Models with additional light particles with masses below the GeV-scale, generically called dark sector
models: Examples are provided by the models of Refs. [108, 109], where additional light neutral
gauge bosons can a↵ect electromagnetic interactions. Such models are intriguing since they completely
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Low energy precision measurements

๏ high precision low energy experiment available      

  

-  β-decay, π-decay: M=mW , δnew ∼ 10-3, δexp ∼ 10-3

- parity-violating electron scattering: M=mW , δnew ∼ 10-3

ü1/QW
e,p ≈10 more sensitive to new physics   

üneed δexp ∼ 10-2    ``easier” experiment 

-

QW
e,p ∼ 1-4 sin2θW ∼ 0.1

size of loop effects from new physics: (α/π)(M/Mnew)2 

๏ discriminatory power with an array of measurements 
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sin2θW

๏ APV (Cs,...)
๏ PVES (E158, Qweak,...)
๏ neutrino scattering (NuTeV...)
๏ eDIS
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  Test of sin2θW running  
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),

� ⌘ 1p
2

✓
�1 + i�2

�3 + i�4

◆
=

1p
2

✓
�1 + i�2

H + v + i�4

◆
=) h�i = 1p

2

✓
0
v

◆
. (11)

The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,

v2

2


�2H2 +

g2

2

�
W µ�W+

µ + (g�)2ZµZµ

��
,

so that

MH = �v =
p

�2µ2, MW =
g

2
v, MZ =

MW

cos ✓W
=

p
g2 + g02

2
v. (12)

The value of v = 246.22 GeV is fixed by the Fermi constant,

GF = 1.1663787(6)⇥ 10�5 GeV�2 =
1p
2v2

, (13)

andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
W

M2
Z

=
g02

g2 + g02
, (14)

and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,

v2

2


�2H2 +

g2

2

�
W µ�W+

µ + (g�)2ZµZµ

��
,

so that

MH = �v =
p

�2µ2, MW =
g

2
v, MZ =

MW

cos ✓W
=

p
g2 + g02

2
v. (12)

The value of v = 246.22 GeV is fixed by the Fermi constant,

GF = 1.1663787(6)⇥ 10�5 GeV�2 =
1p
2v2

, (13)

andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
W

M2
Z

=
g02

g2 + g02
, (14)

and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),

� ⌘ 1p
2

✓
�1 + i�2

�3 + i�4

◆
=

1p
2

✓
�1 + i�2

H + v + i�4

◆
=) h�i = 1p

2

✓
0
v

◆
. (11)

The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,

v2

2


�2H2 +

g2

2

�
W µ�W+

µ + (g�)2ZµZµ

��
,

so that

MH = �v =
p

�2µ2, MW =
g

2
v, MZ =

MW

cos ✓W
=

p
g2 + g02

2
v. (12)

The value of v = 246.22 GeV is fixed by the Fermi constant,

GF = 1.1663787(6)⇥ 10�5 GeV�2 =
1p
2v2

, (13)

andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
W

M2
Z

=
g02

g2 + g02
, (14)

and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,

v2

2


�2H2 +

g2

2

�
W µ�W+

µ + (g�)2ZµZµ

��
,

so that

MH = �v =
p

�2µ2, MW =
g

2
v, MZ =

MW

cos ✓W
=

p
g2 + g02

2
v. (12)

The value of v = 246.22 GeV is fixed by the Fermi constant,

GF = 1.1663787(6)⇥ 10�5 GeV�2 =
1p
2v2

, (13)

andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
W

M2
Z

=
g02

g2 + g02
, (14)

and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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๏ establish SM running with high precision
๏ resolve Z-pole 3 sigma discrepancy 
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),

� ⌘ 1p
2

✓
�1 + i�2

�3 + i�4

◆
=

1p
2

✓
�1 + i�2

H + v + i�4

◆
=) h�i = 1p

2

✓
0
v

◆
. (11)

The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,

v2

2


�2H2 +

g2

2

�
W µ�W+

µ + (g�)2ZµZµ

��
,

so that

MH = �v =
p

�2µ2, MW =
g

2
v, MZ =

MW

cos ✓W
=

p
g2 + g02

2
v. (12)

The value of v = 246.22 GeV is fixed by the Fermi constant,

GF = 1.1663787(6)⇥ 10�5 GeV�2 =
1p
2v2

, (13)

andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
W

M2
Z

=
g02

g2 + g02
, (14)

and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.

5

๏ establish SM running with high precision
๏ resolve Z-pole 3 sigma discrepancy 
๏ probe new physics insensitive at Z-pole
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,

v2

2


�2H2 +
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2

�
W µ�W+

µ + (g�)2ZµZµ

��
,

so that

MH = �v =
p

�2µ2, MW =
g

2
v, MZ =

MW

cos ✓W
=

p
g2 + g02

2
v. (12)

The value of v = 246.22 GeV is fixed by the Fermi constant,

GF = 1.1663787(6)⇥ 10�5 GeV�2 =
1p
2v2

, (13)

andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
W

M2
Z

=
g02

g2 + g02
, (14)

and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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• Coherent quarks in entire nucleus
• Nuclear structure uncertainties
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,
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The value of v = 246.22 GeV is fixed by the Fermi constant,

GF = 1.1663787(6)⇥ 10�5 GeV�2 =
1p
2v2

, (13)

andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
W

M2
Z

=
g02

g2 + g02
, (14)

and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,
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The value of v = 246.22 GeV is fixed by the Fermi constant,

GF = 1.1663787(6)⇥ 10�5 GeV�2 =
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2v2

, (13)

andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
W

M2
Z

=
g02

g2 + g02
, (14)

and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
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andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].
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and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
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potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,
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andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,
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and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
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and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,
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The value of v = 246.22 GeV is fixed by the Fermi constant,

GF = 1.1663787(6)⇥ 10�5 GeV�2 =
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, (13)

andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
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, (14)

and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.

5



S. Su   14

  Test of sin2θW running  
-

Weak mixing angle sinθW

NuTeV 

APV

E158

0.0001 0.001 0.01 0.1 1 10 100 1000 10000

µ [GeV]

0.225

0.230

0.235

0.240

0.245

si
n2 θ

W
(µ

)

QW(Cs)

QW(e)

CMS

Tevatron
LEP 1

SLD

NuTeV

eDIS

QW(p)QW(Ra)

QW(p)

QW(e)

SLAC

JLab

JLab

Mainz

an
tis

cr
ee

ni
ng

screening

SM
published
ongoing
planned

   QW
e (Jlab)

QW
e

 tree -(1-4s2)
QW

e
 loop -0.0449

q2  0.008 GeV2

ALR  -0.04 ppm 
exp precision 2.3% 
δ sin2θW  0.00029

Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
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andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,
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and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
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andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,
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and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,
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The value of v = 246.22 GeV is fixed by the Fermi constant,
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andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
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and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,

v2

2


�2H2 +

g2

2

�
W µ�W+

µ + (g�)2ZµZµ

��
,

so that

MH = �v =
p

�2µ2, MW =
g

2
v, MZ =

MW

cos ✓W
=

p
g2 + g02

2
v. (12)

The value of v = 246.22 GeV is fixed by the Fermi constant,
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andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
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Z
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and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),

� ⌘ 1p
2

✓
�1 + i�2

�3 + i�4

◆
=

1p
2

✓
�1 + i�2

H + v + i�4

◆
=) h�i = 1p

2

✓
0
v

◆
. (11)

The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,
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andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].
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and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,
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The value of v = 246.22 GeV is fixed by the Fermi constant,
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, (13)

andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].
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and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,
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andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
W
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Z

=
g02

g2 + g02
, (14)

and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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QWEAK
-

๏ polarized e beam scattering off proton, elastic scattering

  QW
p (Qweak) QW

e (SLAC) 

QW
e,p

 tree 1-4s2  -(1-4s2)
QW

e,p
 loop 0.0721  -0.0449

q2  0.03 GeV2 0.026 GeV2 
ALR  -0.27 ppm -0.131 ppm 
exp precision 4%  13%
δ sin2θW  0.0007  0.0013
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Extract QW
p 

-

use kinematics to simplify: at forward angle θ 

• measure F(θ,q2) over finite range in q2, extrapolate F to small q2

  existing PVES: SAMPLE, HAPPEX, G0, A4

• minimize effect of F by making q2 small

• q2 ∼ 0.03 GeV2, still enough statistics 
  ⇒ δ Qp

W / Qp
W | hadronic effects ≈ 2 %

Musolf et. al.,  (1994) 

? 
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QCD correction to ep scattering 
-

Box diagram contribution to QW
P
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e p
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e

e p
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Z

γ

e

e p

p

Z

γ

δ QW
P

26% 3% 6%
kloop ∼ O(mW)

using OPE (pQCD)

Erler,  Kurylov and Ramsey-Musolf  (2003)

δ QW
P (QCD) 0.7% 0.08% 0.65% (2% for energy 

dependent contribution)

kloop ∼ O(mZ) ΛQCD < kloop < O(mZ)

non-perturbative

non-calculablesuppression

|CγW| < 2     (CKM unitarity)
|CγZ| < 2

Total theoretical uncertainty ∼ 2%

Similar to nuclear β-decay

νe
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p
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Review Articles:
Erler and Ramsey-Musolf (2005)
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Kumar, Mantry, Marciano and Souder (2013)
Erler and SS (2013)
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,

v2
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
�2H2 +

g2
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�
W µ�W+

µ + (g�)2ZµZµ

��
,

so that

MH = �v =
p

�2µ2, MW =
g

2
v, MZ =

MW

cos ✓W
=

p
g2 + g02

2
v. (12)

The value of v = 246.22 GeV is fixed by the Fermi constant,

GF = 1.1663787(6)⇥ 10�5 GeV�2 =
1p
2v2

, (13)

andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
W

M2
Z

=
g02

g2 + g02
, (14)

and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),

� ⌘ 1p
2

✓
�1 + i�2

�3 + i�4

◆
=

1p
2

✓
�1 + i�2

H + v + i�4

◆
=) h�i = 1p

2

✓
0
v

◆
. (11)

The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,
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The value of v = 246.22 GeV is fixed by the Fermi constant,
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andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
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M2
Z

=
g02

g2 + g02
, (14)

and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,
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andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
W
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Z

=
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, (14)

and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,
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The value of v = 246.22 GeV is fixed by the Fermi constant,

GF = 1.1663787(6)⇥ 10�5 GeV�2 =
1p
2v2

, (13)

andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
W

M2
Z

=
g02

g2 + g02
, (14)

and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,
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The value of v = 246.22 GeV is fixed by the Fermi constant,
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andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
W

M2
Z

=
g02

g2 + g02
, (14)

and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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 Neutrino-nucleus DIS: NuTeV  
-

NC CC

δRν=-0.0033 ± 0.0015   δRν=-0.0019 ± 0.0026 -

gL,R
2=(εu

L,R)2+(εd
L,R)2

• exp fit (ρ=1):  sin2θW
on-shell = 0.2277 ± 0.0016

• SM fit to Z-pole: sin2θW
on-shell = 0.2227 ± 0.00037 (3 σ away)
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,

v2

2


�2H2 +

g2

2

�
W µ�W+

µ + (g�)2ZµZµ

��
,

so that

MH = �v =
p

�2µ2, MW =
g

2
v, MZ =

MW

cos ✓W
=

p
g2 + g02

2
v. (12)

The value of v = 246.22 GeV is fixed by the Fermi constant,

GF = 1.1663787(6)⇥ 10�5 GeV�2 =
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2v2

, (13)

andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
W

M2
Z

=
g02

g2 + g02
, (14)

and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),

� ⌘ 1p
2

✓
�1 + i�2

�3 + i�4

◆
=

1p
2

✓
�1 + i�2

H + v + i�4

◆
=) h�i = 1p

2

✓
0
v

◆
. (11)

The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,
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The value of v = 246.22 GeV is fixed by the Fermi constant,

GF = 1.1663787(6)⇥ 10�5 GeV�2 =
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2v2

, (13)

andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
W
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Z

=
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, (14)

and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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Since one wants to quantize the theory around the classical vacuum, the physically relevant case,
µ2 < 0, requires a redefinition of the original Higgs field, �, so that at the minimum of the potential all
fields have vanishing vacuum expectation values (VEVs),
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The three VEVs, h�ii for i = 1, 2, 4, have been arranged to vanish by a global SU(2)L ⇥ U(1)Y trans-
formation, while for h�3i = v one defines the physical Higgs field, H ⌘ �3 � v, so that hHi = 0. The
potential, V (�), now gives rise to three massless and non-interacting scalars, which in the absence of
the gauge fields would be Goldstone bosons [13]. By performing a local SU(2)L⇥U(1)Y transformation
one can finally proceed to the unitary gauge in which these three bosons disappear from the physical
spectrum and instead provide the longitudinal components of the W and Z bosons. It remains one
massive scalar mode, the physical Higgs boson. The terms quadratic in v arising from L in Eq. (6) are,
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andGF itself can be cleanly extracted from the µ lifetime, ⌧µ, which was measured recently by the MuLan
Collaboration at the PSI with an order of magnitude improved precision, ⌧µ = 2.1969803(22) µs [14].

Thus, at lowest order one can write,

sin2 ✓W = 1� M2
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Z
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and one may elevate either form to an exact definition of sin2 ✓W to all orders in perturbation theory.
The first relation defines the on-shell renormalization scheme, and is manifestly related directly to phys-
ically observable particles masses3. The second, coupling-based relation leads to theoretical constructs
which depend on details of the regularization scheme, the energy scale (µ), the treatment of fermion
thresholds, etc. This class includes the MS-scheme definition, sin2 ✓̂W (µ), and a variant used in super-
symmetric theories, which is based on the DR-scheme. These definitions have the advantages that they
significantly simplify higher-order calculations, and the numerical values of di↵erent couplings can be
directly compared as, e.g., in the discussion of gauge coupling unification. Moreover, the large Yukawa
coupling of the top quark, Yt, and relatedly its heavy mass, mt = Ytv, strongly a↵ect the renormalized
value of MW , while its e↵ect on MZ and sin2 ✓̂W (µ) is much weaker. Therefore, using the on-shell
definition indiscriminately may distort theoretical expressions and lead to a poorer convergences of the
perturbative series. Further definitions and more details can be found in Ref. [15].

The scale dependence of the weak mixing angle renormalized in the MS-scheme [17] is shown in
Figure 1. The minimum of the curve corresponds to Q = MW , below which we switch to an e↵ective
theory with the W± bosons integrated out, and where the �-function for the weak mixing angle changes
sign. For the scale dependence in a mass-dependent renormalization scheme, see Ref. [18], and for a
recent review on the low energy measurements of the weak mixing angle, see also Ref. [3].

3We note, however, that at higher orders the definition of the mass of an unstable particle becomes ambiguous, and
the whole concept of observability becomes demoted.
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Ranges of C1u, C1d, C2u, C2d 
-

Courtesy of  P. Reimer
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Ranges of C1u, C1d, C2u, C2d 
-

Courtesy of  P. Reimer
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Precision of sin2θW determination 
-

Measurement Δsin2θW/sin2θW Δsin2θW

Z-pole 0.07% 0.00017

0.5% Qw(Cs) 0.6% 0.0013

NuTeV 0.7% 0.0016

13.1% Qw(e)SLAC 0.5% 0.0013

4% QW(p) 0.3% 0.00072

2.3% Qw(e)Jlab 0.1% 0.00029
(on par with Z pole)

2% QW(p) Mainz 0.15% 0.00036

2.5% (0.5%) eDIS 1.4% (0.28%) 0.003 (0.0006)

-
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Sensitivity to new physics scale 
-

 

Take δQW
p=4%

Λ:  new physics scale O(1)
Ramsey-Musolf(1999)

courtesy of Carlini

● probe new physics scale comparable to LHC
 

● confirmation of LHC discovery (couplings, charges)
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scaled from R-Musolf, PRC 60 (1999), 015501       

Misc. model sensitivities (non-SUSY)
-

Experiment Z’
M(ZΧ)  M(ZLR)         
(TeV)   (TeV)     

Leptoquarks
MLQ(up)   MLQ(down)

(TeV)        (TeV)

Compositeness 
(LL)

e-q        e-e
(TeV)    (TeV)

EW fit 0.78     0.86 1.5         1.5 11-26   8-10

0.5% Qw(Cs) 1.2      1.3       4.0          3.8 28      ---

13.1% Qw(e) .66      .34       ---         --- ---      13

4% Qw(p) .95      .45 3.1         4.3  28      ----

2.5% Qw(e) 1.5      .77        ---         --- ---        29

- Courtesy of  D. Mack
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SUSY contributions
-

Kurylov, Ramsey-Musolf, Su (2003)
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SUSY contributions
-

Kurylov, Ramsey-Musolf, Su (2003)
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Correlation between QW
p

 , QWe
  

-

 

Distinguish new physics

 

• exp

• MSSM 

• extra Z’  

• RPV SUSY

• leptonquark

Δ QW
p Δ QW

e  

 

 

SM

± 0.0029

SM

± 0.0052

Erler, Kurylov and Ramsey-Musolf  (2003)
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Distinguish new physics

 

• exp

• MSSM 

• extra Z’  

• RPV SUSY

• leptonquark

Δ QW
p Δ QW

e  

 

 

SM

± 0.0029

SM

± 0.0052

Combinations of NC exps could be used to distinguish various new physics 

Erler, Kurylov and Ramsey-Musolf  (2003)

Distinguish 
via APV QW

Cs
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Conclusion 
-

Precision measurements played an important role in developing 
and testing SM

They will be a crucial tool in probing new physics beyond the SM

Low energy precision measurement can probe new physics not mix 
with Z (comparing with Z-pole precision observables)

   precision frontier

Complementary to what we may learn from LHC 

Opportunities and challenges (0.1%) for both experimentalists 
and theorists


